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A self-consistent solution is presented for nonlinear time-dependent collapse of a
two-dimensional X-type magnetic field to form a current sheet. A so-called ‘strong
magnetic field approximation’ is adopted for highly sub-Alfvenic flow of an ideal

\ \

/7, low-beta plasma. To lowest order in the Alfven Mach number, the magnetic field

— evolves through a series of topologically accessible piece-wise potential states

< S with the constraint that the acceleration be perpendicular to the magnetic field.

> — A wide class of solutions is obtained using complex variable theory by assuming

® 29| the magnetic potential is frozen to the plasma. The current sheet in the basic

= solution stretches along the z-axis from —./t to ++/t, and regions of reversed
g : .

O current are found near the ends of the sheet. A current conservation theorem

Eg is proved, which states that the total current in the sheet is zero if it forms

2“2 1 Permanent address: Program Systems Institute, Academy of Sciences, Pereslavl-Zalessky 152140,

go Russia.

I—

85 o Phil. Trans. R. Soc. Lond. A (1995) 351, 1-37 © 1995 The Royal Society

8§ 0 Printed in Great Britain 1 TEX Paper

—d

Ta

=

CHY
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to SO

Philosophical Transactions: Physical Sciences and Engineering. MIKOIY
WwWw.jstor.org


http://rsta.royalsocietypublishing.org/

e

R
\
\\ \\
P

/

\
{

A

P\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
£\

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

2 E. R. Priest and others

by collapse of an initially current-free X-point under the strong magnetic field
approximation and with the magnetic potential frozen to the plasma. The basic
solution is generalized to include other initial states and initial flows. A general
numerical method for the evolution of magnetic fields under the strong magnetic
field approximation is set up when the magnetic potential is not necessarily frozen
to the plasma. This method is applied to an example of the formation of a current
sheet with Y-type neutral points at its ends.

1. Introduction

X-points are special points in a complex two-dimensional magnetic field where
the magnetic field vanishes, and near which the field structure is hyperbolic in
nature. The magnetic field lines which pass through them are known as separa-
trices and they divide the magnetic field up into topologically separate regions.
The X-points represent weak spots in the structure in the sense that the mo-
tions of distant sources can make the field near such a point collapse to form a
current sheet, where the magnetic field is no longer frozen to the plasma. As a
result, rapid dissipation of the magnetic field occurs, with the magnetic energy
being converted into heat, kinetic energy and fast-particle energy by the process
of magnetic reconnection (see, for example, Priest 1985). In most of the solar at-
mosphere, the magnetic field is frozen to the plasma and magnetic energy cannot
be converted directly into heat, but such current sheets are a prime candidate
for energy conversion in many solar phenomena, such as solar flares (Priest 1981;
Somov 1992; Svestka et al. 1992), X-ray bright points (Priest et al. 1994) and
the heating of coronal loops (Parker 1972; Ulmschneider et al. 1991; Priest 1993).
In three dimensions, the X-point becomes a separator field line (which may join
three-dimensional null points) while the separatrix field lines become separatrix
surfaces, but locally, in a plane perpendicular to a separator, the behaviour is
likely to be predominantly similar to the two-dimensional behaviour described
here.

However, it is not only in the solar atmosphere that X-points are important.
Most of the universe is in the plasma state and magnetohydrodynamics (MHD) is
relevant when the length-scales of interest exceed the appropriate plasma scales
(the mean-free path or ion gyro-radius). According to the basic MHD equations,
for most reasonable length-scales of interest, the magnetic field is frozen to the
plasma and is carried around with it. It is only in current sheets (which tend
to form from X-points) that the magnetic field diffuses through the plasma and
the magnetic energy can be released. Thus, current-sheet formation at X-points
is thought to be important in a wide range of astrophysical and space plasma,
phenomena, some of which are analogies of solar phenomena (such as stellar
flares, stellar coronal heating and geomagnetic substorms), while others have no
solar analogy (such as the creation of magnetic turbulence in accretion discs).
In addition, the formation of current-sheet singularities in magnetic fields has
analogous formation of vortex sheets in Euler flows in ordinary fluid dynamics
(Moffatt 1985, 1990; Linardatos, 1993).

Thus, the manner in which X-points collapse to form current sheets is a key
problem in MHD. Dungey (1953) was the first to argue on physical grounds that

Phil. Trans. R. Soc. Lond. A (1995)
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The time-dependent collapse of an X-type magnetic field 3

X-points may be locally unstable to collapse. Consider, for example, the simple
equilibrium current-free field
Boy Boz
Bm = T, B, = ——
l v L

near an X-type neutral point at the origin, where By and £ are constants. The
field lines are the rectangular hyperbolae

(1.1)

y® — z° = const. (1.2)
Now suppose the field is distorted to the form
Boy 2 Boz
B,=—> B,=a‘"—, 1.
where o? > 1. The corresponding field lines are given by
y* — o’2?® = const., (1.4)

so that the limiting separatrix field lines (y = *ax) through the origin are no
longer inclined at %7r but have closed up a little like a pair of scissors.

The current density (j = V x B/u) that results from field (1.3) has only a
z-component j, = (a® — 1)By/(uf). It is uniform in space and gives a Lorentz

force

a? — 1)a?zB? | a?—1)yB?Z .
(@~ Do}, | (0* 1B}

wl ul
On the z-axis, the field lines are more closely spaced but with a smaller curvature
than initially and so the inwards magnetic pressure force increases while the
tension force decreases, giving a resultant magnetic force towards the origin.
On the y-axis, the field lines have the same spacing as initially, but are more
sharply curved, so that the pressure force remains the same and the tension force
increases, producing an outwards magnetic force. In other words, the magnetic
force is such as to increase the original perturbation. As the instability proceeds,
« increases and the separatrices close up, so that the current density and ohmic
heating j%nu also increase.

The instability may be demonstrated formally by showing that the linearized
form of the ideal (MHD) low-3 equations, namely

OB dp

dv
"a—t'ZVX(’UXB), p-az—(VXB)XB/,u,, E——pV"U, (16)

possess solutions of the form
B, = By[1 — ee*|y/¢, B, = B[l + ee**]z /¢,
v, = —evpe“tz /L, v, = evaey /L,

jxB=-— (1.5)

(1.7)

where By, p = po, va = Bo/(1upo)*/?, € (< 1) are constants and the growth-rate
is

w = 2v, /L. (1.8)

The two-dimensional collapse of an X-type configuration was later investigated

more fully by others. Imshennik & Syrovatsky (1967) discovered a nonlinear self-
similar compressible solution with a uniform density, which indicates that the

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 1. (a) A potential magnetic field near an X-type neutral point; (b) a current sheet with
null points at its ends; and (c) a current sheet with reversed current regions near its ends.

é

Q

collapse takes a multiple of the Alfven time ¢/v,. Forbes & Speiser (1979) and
Forbes (1982) modelled the one-dimensional implosion of a magnetic field to form
a current sheet. Syrovatsky (1966, 1969, 1971) studied the response to a small
motion of the sources and included the idea in a solar-flare model. More recently,
Craig & McClymont (1991) have included magnetic diffusion in a linear analysis
of a small perturbation of an X-type field.

Another strand of the theory was initiated by Green (1965), who modelled the
appearance of a current sheet near the X-point, by using complex-variable theory,
and treated the current sheet as a cut in the complex plane. He considered the
slow deformation of a two-dimensional potential field containing an X-point in
the perfectly conducting limit and supposed that the X-point bifurcates into a
pair of Y-type neutral points joined by a current sheet (figure 1).

By absorbing the constants By and ¢ in the magnetic field and the spatial
coordinates, the field (1.1) may be written compactly in terms of the complex
variable z = = + iy as

B, +1iB, = z. (1.9)
The current-sheet field which may grow from this is given by
B, +iB, = (22 + L*)"?, (1.10)
where the sheet stretches from z = —iL to z = +iL.

It should be noted that solutions such as (1.10) may be used in three distinct
ways. First, it represents an equilibrium field which is potential everywhere except
at the current sheet separating two topologically different magnetic flux systems.
Second, by allowing L to vary slowly in time and not allowing reconnection in
the sheet, it may model the time-dependent growth of a current sheet from the
X-point and the resulting evolution of the surrounding potential field. Third, by
allowing reconnection in the sheet, it may model the process of nonlinear magnetic
reconnection at a rate much slower than the Alfven speed (so that the surrounding
field is potential) when the effect of slow-mode shock waves propagating from the
ends of the current sheet is negligible (as is sometimes the case in recent numerical
experiments at high magnetic Reynolds number (Biskamp 1986)). This approach
has been developed by Priest & Lee (1990) and Strachan & Priest (1994) in
their model of non-uniform reconnection. The complex flux function f = A + i
corresponding to (1.10) is

f==-22(2"+L*)'? + 1L%log [2/L + /(2*/L* + 1)] + F(t), (1.11)
where F(t) is a real function, determined in this model by resistive processes

Phil. Trans. R. Soc. Lond. A (1995)
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The time-dependent collapse of an X-type magnetic field 5

within the sheet. (Including an imaginary part of F would give an arbitrary shift
of magnetic potential ¢ in time and would have no physical sense, so we can set
it equal to zero without loss of generality.) The reconnection may be steady or
non-steady by allowing L and dF'/dt to be constant or time-dependent. If F is a
constant, there is no reconnection.

Green’s approach has been extended and applied to several solar phenom-
ena. Priest & Raadu (1975) modelled the formation of a current sheet in the
corona between a pair of equal bipolar sunspot groups. Tur & Priest (1976) ex-
tended the analysis to include curved current sheets and applied it to unequal
interacting bipoles and also to the sheet that is created as new flux emerges
from below the photosphere into an overlying horizontal field (see also Low & Hu
1983). Tur (1977) generalized the Priest-Raadu analysis to the approach of three-
dimensional dipoles creating an axisymmetric annular current sheet. Sakurai &
Uchida (1977) have calculated curved current sheets between sets of dipoles.
Also, Malherbe & Priest (1983) set up several current-sheet models for solar
prominences, while Priest et al. (1989) have proposed a twisted flux-tube model
for prominences in which the prominence is modelled as a current sheet in a
large-scale twisted flux tube. Aly & Amari (1989) derived a general form for a
magnetic field with current sheets. This enabled Titov (1992) to develop a general
technique for calculating current-sheet fields from boundary conditions given at
the photosphere.

Somov & Syrovatsky (1976) realized that the solution (1.10) is not unique and
that there are other current-sheet solutions which may evolve from the X-point
field (1.9). They have the form

) 2%+ a?
By _i_ le. = m, (1.12)
where a? < L?, and have a sheet stretching from z = —iL to iL as before,

but now there are singularities at the ends of the sheet and regions of reversed-
current stretch from one null point at z = ia to iL, and from another null point
at z = —ia to —iL. The particular case a® = L? reduces to (1.10). However, these
solutions were largely ignored in the West until recent numerical experiments on
magnetic reconnection sometimes revealed reversed-current spikes near the ends
of the reconnecting current sheet (Biskamp 1986; Lee & Fu 1986; Forbes & Priest
1987). Also, Bajer (1990) has numerically modelled the collapse of an X-point in
an isolated region and found that reversed and singular currents appear at the
ends of the sheet.

A natural question that arises is: when an X-point collapses, is the resulting
current sheet of the form (1.10) or (1.11), or is it of some other form? Further-
more, fields (1.10) and (1.11) are simply piecewise potential solutions of Laplace’s
equation that have cuts or current sheets, and have just been written down by
inspection, so what solutions arise when one solves both the equation of mo-
tion (from which Laplace’s equation arises) and the induction equation in a self-
consistent manner? Here we attempt to shed light on these questions. We find
some new self-consistent solutions to the MHD equations for the nonlinear ideal
dynamic growth of a current sheet in the limit when the Alfven Mach number is
much less than unity.

A preliminary analysis was presented by Titov & Priest (1993). Section 2 de-
scribes the equations and assumptions of the model. Section 3 gives the properties

Phil. Trans. R. Soc. Lond. A (1995)
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6 E. R. Priest and others

of the solution and proves a theorem about the total current in the sheet. Sec-
tion 4 generalizes the solution in several ways, and §5 develops a technique for
solving the problem numerically when the magnetic potential is not frozen to the
plasma.

2. Equations and assumptions of the model

(a) The strong magnetic field approzimation

Here we derive the basic equations for slow flow in an ideal cold plasma. First
we assume that the plasma beta is much smaller and the magnetic Reynolds
number much larger than unity, so that the plasma pressure gradient and the
magnetic diffusion may be neglected and the equations of motion and induction
may be written as

dv
— =jxB 2.1
pq; =3 % B, (2.1)
%—? =V x (v x B), (2.2)
where
J=VxB/u, V-B=0 (2.3)
and the density p and pressure p are determined by the equations of continuity
Op
el . = 24
5 TV (pv)=0 (2.4)
and, say, adiabaticity
d (p
—(£) =o. 2.
di (m) 0 (2:5)

Now suppose the flow is slow in the sense that flow speeds v are much smaller
than the Alfven speed vy = B/,/up and expand in powers of a small parameter

e(~ v/vp):
v=¢(vy+eva+--), B=By+eB +---. (2.6)
Assume also that time variations are on a time £/v ~ 7!, where £ is a typical

length scale, and that the flow (v,,v,) and field (B,, B,) are two dimensional.
Then, to lowest order, (2.1) and (2.2) become

Jo=10 (2.7)

and

P09 x (v x By), (2.8)
In other words, there is an evolution through potential states (jo = 0), with the
plasma motion vy, perpendicular to the field lines determined by the frozen-in
field-line motion. However, these potential states are not arbitrary, since they
need to be ‘accessible’ with the topology being preserved (Moffatt 1985). Also,
the flows need to be determined self-consistently. The above assumptions mean
that any variations in time occur on the timescale of the fluid flow rather than
the Alfven time. Thus, we are not considering magnetic waves and the question
of the stability of our solutions is one for further study.

Phil. Trans. R. Soc. Lond. A (1995)
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The time-dependent collapse of an X-type magnetic field 7

1

Figure 2. As a field line moves from position 1 to 2, the component v, of the velocity of a plasma
element is determined by the motion of the field line, while v} is determined by a balance between
coriolis and centrifugal forces.

To next order, the equation of motion (2.1) gives

dv, .
— =jo x B
Po a J2 05
which implies a constraint at lowest order, namely that (Somov & Syrovatsky

1976)

d'Ul
It By, = 0. (2.9)
In other words, the acceleration must be perpendicular to the magnetic field. This
condition determines the flow vy parallel to the magnetic field from a balance
between the coriolis and centrifugal forces associated with the rotation of the field
lines as they move (figure 2).
The divergence-free condition (2.3) on the magnetic field may be satisfied iden-

tically by writing the field components in terms of the flux function A,

0A 0A
 Bo,) = (==, —2= 1
(BOw; BOy) <ay ) 83}) ) (2 O)
and then the basic equations (2.7)—(2.9) may be rewritten as
VZiA =0, (2.11)
d4 0A
—‘d—t— = 5{ + ’01 * VA — O, (2.12)
d’Ul
e A=0. 2.
X VA=0 (2.13)

Now, in principle, the way of solving the set of equations (2.7)-(2.9) or (2.11)-
(2.13) is as follows. First, an accessible set of potential solutions to (2.7) or (2.11),
which preserve the magnetic topology, is obtained. Next, the flow speed normal
to the magnetic field (vy,) is determined by (2.8) or (2.12). Finally, the speed
along the field (vy)) is given by solving (2.9) or (2.13). This is the hardest step
since (2.9) and (2.13) are nonlinear equations which usually require a numerical

Phil. Trans. R. Soc. Lond. A (1995)
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8 E. R. Priest and others
(b)

\ 4 ®=const.

A=const.

Figure 3. Contours of constant flux function A (field lines) and magnetic potential @ in: (a)
the z-plane; and (b) the f-plane, where z =z + iy and f = A +1i®.

solution. In the next section, therefore, we develop a technique for producing a
wide class of particular analytical solutions.

(b) Frozen magnetic potential
We introduce the magnetic potential ¢ (figure 3) such that

oP 09
(BOwyBOy) - <—5£;,—_6—:;> )

and then, by comparing with (2.10), we can see that A and ¢ are conjugate
harmonic functions satisfying the Cauchy-Riemann equations
od 0A 09 O0A
Ox oy’ Oy Ox’
Magnetic field lines are curves of A = const., so that the vector VA normal to
such curves is perpendicular to V@, and both A and ¢ satisfy Laplace’s equation.

Condition (2.12) implies that values of A are frozen to the plasma and lines of
A move with it. At any one time, a given plasma element lies on the intersection
of a curve A = const. and a curve ¢ = const., but, in general, as the plasma
element moves, although its value of A is preserved, it will move along the line
A = const. to different values of ¢. We now assume that ¢ is also frozen to the
plasma, so that plasma elements preserve both A and ¢ as they move. This is
a key assumption of the solution that we develop in this section and generalize
in §5, although a numerical method for finding solutions with unfrozen & is
developed in §6. In view of the paucity of previous solutions with current sheets,
the fact that we are able to obtain a whole new family of solutions with & frozen
to the plasma is sufficient justification for adopting this assumption. However,
it is shown in §3 a that the physical consequences of this assumption are that:
the current density at each point in space remains constant in time; the total
current inside the current sheet is conserved; and the flow components v, and v,
are conjugate harmonic functions satisfying Laplace’s equation.

The complex function f = A 4 i® may therefore be defined and, whereas in
the z-plane plasma elements move around attached to a grid of curves A = const.
and ¢ = const., in the f-plane the plasma elements remain stationary (figure 3).
Our aim is then to find the mapping f(z,t) and the inverse mapping z(f, ).

The key equation that we need to solve is (2.9) or (2.13). However, the vector
position R = & + yy of a plasma element may be regarded as a function R =
R(A, &,t) and, since the curves of A = const. and & = const. are perpendicular,

(2.14)

(2.15)

Phil. Trans. R. Soc. Lond. A (1995)
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The time-dependent collapse of an X-type magnetic field 9

the magnetic field By is in the same direction as OR/0®. Thus, (2.9) may be
rewritten

d’R OR
dez2 99
or, in terms of the complex function z(f,t),

(855//2‘?) - (57;?//—2—5 =0, (2.17)

where the overbar denotes a complex conjugate. The solution of this is (Titov &
Priest 1993)

(2.16)

0’z t) 0z
o~ Xap
where x(t) is an arbitrary real function.
Here we shall consider, in particular, the simplest case, namely of acceleration-

free flows, for which x = 0 (although in §4 ¢ we generalize the analysis to include
accelerated flows). Then the solution of (2.18) becomes

z = 2o(f) + vo(f)t, (2.19)

where 2o(f) and vo(f) are arbitrary functions. zo(f) represents the initial posi-
tions of plasma elements and vo(f) their initial velocities (0z/0t).
As our basic initial field we shall consider the simplest X-point case, namely

B()w =Y, BOy = -z, (220)

(2.18)

for which

A=1(2*-9?), and & =uy,

so that the initial value of f, namely f(zo,0), is
fo= 32 (2.21)

The corresponding initial function z, namely z(f,0), is

20(f) = v2f (2.22)

for plasma elements in the right half-plane (and —/2f for those in the left half-
plane). In the above equations, and what follows, the variables are assumed to be
dimensionless so that the dimensional magnetic field, complex function, complex
variable, velocity and time are B.B, B.L.f, L.z, Vov and (L./V;)t in terms of
the typical values B,, L, and V.

We also suppose that the initial plasma velocity is perpendicular to the mag-
netic field v; - By = 0 and has components

1 1
2t _ 1Y
Ule = 2+ y2’ Viy = 2 4 y2’ (2:23)
so that the initial electric field Ey = —v; X By is uniform and has a magnitude
of i. These components may be combined to give
Vig + 101y = 0z _ 1
e v = (9t N 420,

Phil. Trans. R. Soc. Lond. A (1995)
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10 E. R. Priest and others

and so the initial velocity function is
1

vo(f) = W

With assumed forms (2.22) and (2.24), the Lagrangian solution (2.19) for the
positions of plasma elements as a function of time and their initial positions (z)
becomes

(2.24)

= Z -
z 0+4Z0

This may be inverted to give
220 = 2z + /(2% — 1), (2.25)

so that z = 29 at t = 0. (The negative square root gives the spurious solution
2o =0 when ¢t =0.)

Since the plasma elements preserve their values of f as they move, and initially
f = fo, where f, is given by (2.21) and z, by (2.25), we deduce that

f(z,t) = 2z + V(2* — 1)), (2.26)

which is the required function that we have been seeking. The resulting magnetic
field and plasma velocity components are

of _ _(+V(E 1)

Boy +iBoe = Bloyt) =~ =~ (2.27)
and X
Ve + gy = V(z,1) = %’3 _ 4170 - Sy (2.28)
Also, the electric field is
Fo = —v1, By, + v1,Bo; = Re(—VB) = 1 Re (Tzf——t) + 1> , (2.29)

which is equal to 41 at t = 0, as required. In addition, the plasma density is given
by
_ Po _ Po
P 02/05P T T= /G + (@ =)
which initially is assumed to be uniform (p = py). We adopt this assumption for
simplicity, although in general the initial density may be non-uniform.

(2.30)

3. Properties of the basic solution

The magnetic field lines are shown in figure 4. A current sheet stretches along
the z-axis from z = —y/t to z = 4/t at time t. The ends of the sheet move
outwards at a speed 1/(24/t). Several interesting properties of the solution may
be derived.

1. From (2.28) it can be seen that each plasma element moves at a constant
velocity 1/(4z9) = vo(f) in a straight line towards the z-axis. The direction of
the motion is perpendicular to the initial magnetic field and the magnitude is
inversely proportional to the initial distance from the origin.
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The time-dependent collapse of an X-type magnetic field 11

o =1
.

Figure 4. Magnetic field lines (solid) for: (a) the basic solution at ¢ = 0; and (b) at ¢ > 0 when
a current sheet stretches from z = —4/t to z = /1.

2. The form (2.27) for the magnetic field components is elegant, but the separate
components as functions of z and y are far from simple, and may be found by
taking real and imaginary parts of (2.27) to give

1 ~ 2zyR, — (2 —y®)R_
Boz = =3 [y* b= m r) |’
1 « 2zyR_ + (22 — y*)R,
S - 1
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12 E. R. Priest and others

20 J(x)

i\ Nenoox

Figure 5. The current density J(z) in the sheet as a function of distance x along the sheet.

where
Ry =[m+ (2 =y —1)]'?/(2y2), R-=[m— (2> —y*—1)]'?/(2v2),
R, = R_sgn(z), R_=R_sgn(y), m=|[(z®—y?—1t)?+4z%y%"/%
The corresponding flux function and magnetic potential are

Az,y,t) = }[1(a® —y*) — L+ zR, —yR_] (3.2)

and
®(z,y,t) = LH(zy + R+ yR,).

Similarly, the real and imaginary parts of (2.28) give the velocity components as

1 ~
= R
Vizg = 1 ~2m2+ ‘|1' 5 a1’ (33)
A(zz+ R )* + (3y + R-)?
1 -
ly R
Viy = 2y

4[(Ge+ R )? + Gy + R

3. The solutions A(z,t), B(z,t), V(z,t) are self-similar since they may be writ-
ten in the form G(t)H(z/+/t).
4. At the sheet (y =0, 2* < t), there is a normal component

BOy = —lx, (34)

which is continuous across the sheet and is exactly half of the initial value (2.20).
Thus, as the sheet grows in length, it swallows up half of the magnetic flux, while
the remainder piles up ahead of it. The tangential component of the field at the
sheet is

1 x?

4 | (t —z?)1/2
where the plus and minus signs refer to the values above and below the sheet,

By = —(t— 2?2, (3.5)
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The time-dependent collapse of an X-type magnetic field 13

respectively. On the top side of the sheet, By, is negative for |z| < /(3t) and
positive for v/(3t) < z < y/t. At z = \/(5t), the field is normal to the sheet.
5. The current density of the sheet is
(BOw)y=0+ — (BOw)y=0—

J(LU) =- 1 )

and so from (2.35) it has the form

1| it—a?
J(z) = “ [G‘_x—z)l/g} ) (3.6)
as sketched in figure 5. The current reverses sign at £+/(3t), so that the ends
of the sheet possess regions of reversed current. The current at the centre of the
sheet grows in time like \/t.

6. Now, what about the rate of magnetic energy dissipation? First, let us cal-
culate the Poynting flux P of magnetic energy into the sheet, around a contour
C which encircles the sheet, namely

2
—f &vnds = —}[ @Im(f)dz)
c M c K _
= — f BOBO__._._. Im (VO —6—2 dZ()) , (37)
Co p0z/0z 0z /02 0%

where

- _ 0z t

B()BOIZOZO:it, 5%:1_1—2—53—

and the contour Cy in the z, plane is a circle of radius /t/2 given by 2o =
Vt/2exp(ia), say. Then

0z 0z

92 9% _ 9(1 - cos?2

820 6z0 ( €08 a)
and

Im (Vogi dz0> = Z(cos2a — 1) da,
620
so that (3.7) reduces simply to
t [ mt
o= da=—. .
320 /0 * = Tou (3.8)

In other words, the flux of magnetic energy into the sheet grows linearly in time as
the sheet lengthens. However, since the sheet has zero width in the present model,
it contains zero magnetic energy, and, by Poynting’s theorem, P represents the
rate at which energy is being converted. Typically half goes into ohmic heating
and half into the work done by the Lorentz force, the exact proportions depending
on the details of the current-sheet interior.

7. In setting up our expansion in the form (2.6), we have assumed that the flow
speed exceeds the sound speed and is smaller than the Alfven speed. We may
now therefore estimate a posteriori the region of validity of these approximations
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14 E. R. Priest and others

in terms of the initial positions zg of the plasma elements. First, we find that in

dimensional variables

L [ Ve |20 Ve

L /2 -~ < , 3.9

2 VAe Le 4ICse ( )
which fails at small values of zq where the flow speed becomes too large and at
large values of zq where the flow speed becomes too small. In addition, near the

ends of the current sheet where 2zy/+/(L.v.) = %+/t, the sound speed becomes
too large, giving the extra condition that

220

(\/—(LI) = W) > Vi (42%;)”(2(7_1»,

(a) A current conservation theorem

(3.10)

A rather surprising feature of basic solution (2.27) is that the total current in
the sheet, obtained by integrating (3.6) between —4/t and ++/t, vanishes so that
the positive and negative contributions cancel out. This may also be seen from
the fact that there is no current outside the sheet and the field (2.27) at large

distances has the form
c 1
—z+ -+ O (—3) s
z z

with ¢ = 0 so that the line-current contribution vanishes.

So why does the current vanish? Basically, it is because of the nature of the
flows being considered and, in particular, the assumption that & is conserved, as
shown in the following theorem.

Theorem. The total current I in a sheet, which forms by collapse of an ini-
tially current-free X-point, vanishes under the strong magnetic field approxima-
tion if the flux function A and magnetic potential & are conserved.

Proof. The total current in the sheet is

IIfBo’dS,

evaluated along a circuit encircling the sheet. This may be written in complex-
variable notation as

I =1Im ]{ B(z)dz
or, from the definition of B in terms of the complex potential f(z),

I:—Im]{%dzz—lm]fdf.

But, if A and & are conserved, f = f; and so

I=- Imj{ dfo
However, in the initial state, there is no current and so
I1=0,
as required. |
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The time-dependent collapse of an X-type magnetic field 15

Thus, the conservation of current is a rather general property of a wide class
of flows and initial states and is not restricted to the particular basic solution we
have discovered. In particular, it will hold for: other initial states and not just
(2.21); other initial velocities and not just (2.24); and other solutions to basic
equation (2.18) for z(f,t) and not just the acceleration-free solution (2.19).

Several other comments concerning the consequences of ® being frozen to the
plasma may be made. First note that, if the magnetic field is written in terms of
the magnetic potential @, the current enclosed by a circuit may be written

.[:%Bo-ds:/vgﬁ‘dSZ/d@, (3.11)

Of course, if the magnetic field is current-free along the circuit, in general this
does not necessarily vanish — see, for example, the potential & = ¢ of a point
source. However, if @ is single-valued then the current does vanish. It can be seen
that our solution (2.26) for f (and therefore ®) is indeed single-valued. But, for
example, (1.10) has

f=—12*+ LHV? 4 LL?sinh '(z/L),
2 2

which is not single-valued.
If & is frozen to the plasma,

o

E{—F'Ul 'VQIO, (3.12)
or, from definition (2.14) of @,
0P
—8't— - V1 B() =0
Taking the gradient and again using (2.14) we find
0B
_8_t° = —V(v, - By). (3.13)
This equation has several consequences. The first, by taking the curl, is
0

so that the current remains constant in time at each point. The second, by taking
the divergence, is that

V2(v, - By) = 0, (3.15)
so that v, - By is harmonic. Third, by subtracting from (2.2), we obtain

V(’Ul . Bo) + (B() . V)’Ul - (V . 'v1)30 — ('Ul . V)Bo =0.

The z- and y-components of this equation reduce to

BOy (81)1@/ + 8U1x> = (8v1y - 81}1:{:) BOa;a

oz Oy Oy Oz
Ovyy,  Ovi, B Ovy,  Ovyy >
B‘”(ax + 8y>_(8m gy ) Pov
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16 E. R. Priest and others
which implies that

8'01y _ _8'01:,; and 8’01y N 8'01:,;

Ox Ay oy Oz’

In other words, vy, and vy, are conjugate harmonic functions satisfying Laplace’s
equation. (This is consistent of course with our earlier result that vy, + ivy, is
analytic (2.28).)

(3.16)

4. Generalizations of the basic solution

In deriving our basic solution (2.26) for the complex potential f(z,t) from the
acceleration-free solution (2.19) for z(f,t) to the basic equation (2.18), we have
assumed an initial X-point field f, = %zg (2.21), which determined the arbitrary
function zo(f) as its inverse. In addition, the second arbitrary function vy (f) was
determined from the condition that

vo(f)zo(f) = ;- (4.1)

Since in this case zo = 9fy/0t = —By, the initial flow is perpendicular to the
magnetic field (because V,B, is real), and the initial electric field is 1.

(a) Line current source

Now let us examine the consequences of picking other initial functions fy which
have previously been discussed in the literature in relation to important physical
problems. For example, the function

I
folz) = £-log 2 (4.2)
T
gives a flux function and magnetic field
ul 0A ul
= -— By=—-——=—"—.
A 27 log7,  Boo or 27r

It represents the configuration with circular field lines created by a line current
at the origin (figure 6a) having the equations log/x? + y? = const., which is
commonly invoked in plasma physics as a model for a magnetic field produced
by a line source. The inverse function is

zo(f) = ¥/, (4.3)
and so, if we again use condition (4.1), the initial velocity is
vo(f) = he 20D, (4.4)

The resulting Lagrangian form of the positions (z) of plasma elements in terms
of their initial values (z;) is the same as before, namely (2.24), and so the inverse
solution is again given by

220 = 2 + /(2% — t). (4.5)

Since the values of f are preserved following plasma elements, f = f,, where f,
is given by (4.2) and z, by (4.5), so that

Flert) = Elogla(z + V(2% ~ 1) (4.6)
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The time-dependent collapse of an X-type magnetic field 17

Figure 6. Magnetic field lines for: (a) a current filament; that (b) splits into a current sheet.

The resulting magnetic field is

. of ul

B By,=-——=-——— 4.7
oy + 150 9z 2m/(z2 1) (47)
Initially it gives the field —ul/(27z), and, as time proceeds, the current filament
splits into a current sheet of length 2./, stretching from z = —\/t to z = /¢
(figure 6b). The field lines are given by log v/[(32 + R4)* + (3y + R-)?] = const.

The plasma velocity is
0z 1

i _=——=— = ——, 4'
viz iy = 4z z++/(22—1t) (48)

From (4.7), the magnetic field components are given by

2 2 2 2 2 2
{ o (ML) KAL) (WY X4 VGO 40
280, = (zw) weravy 0 Ba=\3r) Ty WY

where X = 2 —3y?—t, Y = zy. In particular, on the current sheet (y = 0, 2* < t),

[
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18 E. R. Priest and others

B, vanishes and
_ M
2w/t — 22)’
with By, jumping from a positive value below to a negative value above the sheet.
Thus, the current density in the sheet has a magnitude

J)= (410)

xr) = . .
Vi)

Integrating this from one end of the sheet to the other, we find that the total
current in the sheet is I, and therefore conserved in time, as we expect from our
current conservation theorem.

The initial flow and electric field are different in form from the basic solution
(2.26). The initial streamlines are those of a hyperbolic flow coming in along the
y-axis and out along the z-axis and are only perpendicular to the magnetic field
along the z- and y-axes. The initial electric field is not uniform but is ul(x?* —

y?)/18m(z? + y?)7.

BOm

(b) Two line-current sources
A second example is to start with the complex potential

fo(z) = log(z* — ag), (4.11)

due to two line sources at z = ag and z = —a, (figure 7a), which is of great
historical interest since it was the example considered by Green (1965) when first
modelling current-sheet creation in astrophysics. The inverse function is

20(f) = /(a5 +€), (4.12)
and, by imposing an initial velocity of the form
v(f) = —m, (4.13)
we find
t
z=2zy— e (4.14)

with an inverse solution given by
220 = 2 + /(2% + 1), (4.15)

which is of the same form as (4.5) except that ¢ is replaced by —t. As usual, since
f remains constant following plasma elements, the solution for f(z,t) is given by
(4.11) with 2o from (4.15), namely

f=1log(22% +t+22/(2* +t) — 4a2) — log 4. (4.16)
The corresponding complex magnetic field is
0 422 + 2t + 4 24t
Boy +iBgs = 2 — @ A2+ 4 ) (4.17)

0z V(22 +1)(222 +t — 4ak + 22/(22 + 1))

This approaches the form —2z/(2? — a2), corresponding to (4.11), as t tends to
zero. It has a current sheet stretching from z = —i,/t to i/t and the sources that
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Figure 7. Magnetic field lines for (a) a pair of line-current sources that create a current sheet

z by: (b) converging; and (c) diverging motions.
S E were initially at z = £a, have moved with constant speeds of F1/(4ao) to the
M= locations z = ag — t/(4ay) and z = —ag + t/(4ao), as shown in figure 7b.
= 5 If, instead of (4.13), the initial velocity
= O 1

S S— 4.1
= w U()(f) 4\/(a(2) +€f) ( 8)

is assumed, the effect is to replace ¢ by —t in the above solution (4.14)—(4.17), so
that a current sheet stretches from z = —4/t to z = 4/t and the sources move to
z = ag +t/(4ay) and z = —ag — t/(4ao). The resulting current sheet formed by
sources moving apart at constant speeds is shown in figure 7c.
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20 E. R. Priest and others

(¢) Two dipole sources
A third example is to consider the potential

—2iDz
fo(Z) 22 a%, (419)
which is of great interest in a solar context. It represents the coronal field due
to two collinear bipolar regions at z = +a, (figure 8a), and was used to model
solar flares by Priest and Raadu (1975). More recently, it has been invoked as
an important example of solar coronal heating by the interaction of neighbouring
bipolar flux regions. The required inverse function is

i
z(f) = ?[—D +V(D* = aj f?)). (4.20)
For the initial flow function we choose
1 i
UO(-f) = - 3 (421)

4(20 — iao) + &1}_0

which has the property of being a potential stagnation-point flow centred about
the X-point (2o = iag) of the initial field, together with a uniform upflow which
ensures that the dipole sources move along the z-axis towards one another.
The Lagrangian solution for the positions of plasma elements is then
t it
Z2=2)— ——— + — 4.22
0 4(2’0 — 1a0) 8(10, ( )

and its inverse is given by

. t , t \71?
2z0=z+1<a0—§t—0>+\/[z—z<a0+%>] +t (423)

The resulting solution for f is found by putting f = f,, where f, is given by
(4.19) and z, by (4.23), namely

t t \1?
sert) = =20z (e = g )+ { [ i(o+ 1)) o)
2 M2 g0 ot { < _LH
x{z Tag 3ag 64a§+2+ z+1ilag Sae

x{[z—i(ao—f- S—fl;)rﬂ}m}_l. (4.24)

As time increases, the dipole sources approach one another at a constant rel-
ative speed of fa;', and are located at z = =+[ag — ¢/(8ao)]. The current sheet
grows and rises, with its ends at the points z = i[ag + t/(8ao) % /t], so that its
length at time ¢ is 24/t.

If, in place of (4.21), an initial flow of

vo(f) = 1 it

4(20 — i(l()) %

is assumed, then the dipole sources instead separate and a curved current sheet
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YN

(@)

A4

AN

Figure 8. The magnetic field due (a) a pair of dipoles which (b) approach and create a current
sheet.

is formed with its end-points at
t?
=ila — | &4/t
‘ ( ot 800) \/

The evolution of a current sheet between unequal dipole sources may also be
modelled, following the approach of Tur & Priest (1976).
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22 E. R. Priest and others

(L

(h)

Figure 9. A sketch of the magnetic field lines due to (a) a dipole and a uniform field which (b)
interact and create a current sheet.

(d) Fluz emergence

Tur & Priest (1976) have suggested that the emergence of new flux from below
the solar photosphere and its interaction with an overlying horizontal coronal
magnetic field may be modelled by means of the potential

fo(z) =By <—z + @) : (4.25)

This represents a horizontal field of strength By, together with a dipole of strength
Boyy placed at the origin. Flux emergence is a fundamental process in the Sun
and other stars, and also in accretion discs, and so it is important to study
the consequences of flux emergence for heating the overlying coronae. The field
contains an X-point at z; = iyy (figure 9). The analysis of the present paper may
therefore be followed by first noting that the required inverse function is

2
zO(f):i%Bo—'—\/y%_élf_Bg'

For the initial flow function we then assume
1 1
Vo f = N + "
( ) 4(20 — lyN> 41yN’
which represents a stagnation-point flow about the X-point together with a uni-
form vertical motion which keeps the dipole source at a fixed location.
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The time-dependent collapse of an X-type magnetic field 23

The positions z of plasma elements initially at z, are then given by
t n t
4(zg — iyn)  diyn’

2 =2zy+

which gives the inverse solution as

it it N
220 = 2+ — +iyn + 24+ — —iyn | —t|. (4.26)
4yn 4yn

By putting f = f; and substituting for f; and zo from (4.25) and (4.26), the
resulting solution for the complex potential is
2

t it it
flz,t) = %iBO{GyIQ\I 2t (z-i——l—— +in>

8yk YN dyn
X[lz24+-——1yn| — ¢
4yn
~1
X |z+ i + iyn + (z+ L >2 t (4.27)
z+ — — =1 — . .
dyn N dyn .

The ends of the current sheet which grows in time are therefore located at z =
iyn — $it/yn £ +/t. In this model, due to an upward flow at the photospheric level,
the magnetic field lines rise up and reach the current sheet where they reconnect,
so that the lower part of them (with respect to the sheet) is accumulated near
the dipole source. Indeed, we have from above

0z B t
0201500 YR
and, hence, near the dipole
z
20

(L (/49R))
so from (4.25) if follows that

z yn(1+t/(4y3))
(1+¢/(4y%)) z ’
which demonstrates the increase of the dipole moment in time.

fZIBO -

(e) Four line currents
The interaction of a quadrupolar magnetic structure consisting of four mag-
netic islands surrounding an X-point was considered numerically by Bajer (1990).
An elegant model having a similar qualitative form to his may be set up by con-
sidering the initial complex potential

2% —a?
)
2% + a}

folz) = log (4.28)

which is due to four line currents of equal magnitude at z = +ay, iag such that
adjacent line currents have opposite directions (figure 10). The required inverse
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(@)

(b

Figure 10. Sketch of the magnetic field of four line currents that move and create a current
sheet.

function is

L4 ef 1/2
Zo(f) = Qo 1—of

1
4

220 = 2+ /(2* + 1). (4.29)

Writing f = fo, and substituting for zy from (4.29), we therefore find the
solution

and the initial flow function vy = —1z," leads, as usual, to the relation

[z + V(22 +1)]? — 4a?
[z + V(22 +1)]* + 4a}’

f(Zv t) = log

Phil. Trans. R. Soc. Lond. A (1995)
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The time-dependent collapse of an X-type magnetic field 25

This has branch points, the ends of the current sheet, at z = +i4/¢t, which move
apart in time. The sources have moved to the locations where the argument of
the logarithm is either zero or infinite, namely

t t
z::i:(ao————> and z::i:i(ao—{———).

Thus, the two sources originally at z = 4aq approach one another at a relative
speed of 1/(2ay), while those at tiay move apart at the same speed. The solution
may be modified to give a structure of four lobes within a closed circular field
line at 7 = 1, say, by considering

- (22 —a)(a2z? +1)
fo(z) = log (22 +ad)(adz? - 1)

in place of (4.28). This is even closer to Bajer’s model.

(f) Initial velocity
When deriving our basic solution (2.26), we assumed an initial velocity function

1

— 4.31
P (4.31)

Vg = Vi + vy =

and substituted it into the general solution
2 =29+ ’Uot (432)

before inverting to find zg = 2zo(2,t) (2.25). There is, however, very little choice
in the form of this velocity function. Replacing (4.31) by

C2

Vo %o (433)
simply has the effect of replacing ¢ in (4.32) and (2.26) by 4c’t, so that the
current sheet stretches between z = —2¢y/t and z = 2¢/t. A velocity function of
vg = —c?/ 29, on the other hand, makes the current sheet grow in the y-direction
and stretch between z = —2icy/t and z = 2icy/t.

What are the constraints on the form of vy? First, except at the origin, it needs
to be an analytic function of z when the magnetic potential is frozen-in, as shown
in §3a. Second, the flow needs to look qualitatively like that of (4.31) with the
field lines being carried in along the y-axis, say, to form the sheet, and out along
the z-axis, say. Third, since the electric field is initially

EO = — R,G(VOB()),

and By = —zg, if it is to be non-zero at the origin then vy must have a singularity
at least as strong as z; '

Now, an analytic function which is regular in a finite region 0 < |2| < R outside
the origin can always be expanded in a Laurent series

o0 (oo}

= —
zdanz"—i— E bz~ ".
n=0 n=1

Thus, we see that the form (4.31) is simply the first term in the part of the series
with negative powers and it initially makes the electric field constant and the flow

Phil. Trans. R. Soc. Lond. A (1995)
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26 E. R. Priest and others

perpendicular to the field. The positive powers of z do not provide the required
form of solution. For instance, a constant flow simply translates the field as a
whole without making the X-point collapse, while vy = —z represents an inflow
which just concentrates the field and vy, = iz gives a circular flow which also
decreases the field magnitude, again without producing a current sheet. Apart
from flows of the form (4.33), we are therefore left only with solutions approaching
25" as zo tends to zero, or behaving like z, ™.
An example of the former would be to adopt

TTZo

™ .
Vo — é‘z sinh (“23> s (434)
so that

Vig = (8%) sinh (g%) cos (g%) / {sinh2 <72T—§—> + sin® (g—%)},
- _ (™ TN n (™Y an? [T 2 (™Y
Viy = <8L>cosh(2L>sm<2L>/{smh <2L>+sm <2L>}'

This behaves like (4.31) near the origin and has v, = 0 on z = 0 and v, = 0 on
y = 0, but at y = +L it represents a unidirectional inflow with v, = 0. However,
the inversion of (4.32) is then not possible analytically in terms of elementary
functions.
The initial flow
1

Vo = —3
2

(4.35)

represents a flow that comes in on the asymptotes 6 = ﬁ:iﬂ', 0= :t%ﬂ‘ and goes
out along the z- and y-axes. Equation (4.32) then becomes
zg — 2z +t =0,

with four roots, one of which is

20 = b+ /(b* —¢), (4.36)
where

b=1[24 (122 +w)'?), c=1iu+ (u?-t)'/?
and
u= {31[e? — (2 — B0V} 4 {Rala + (2* - BB ),

The resulting field therefore has a complex flux function of f = —;—zg with zo(z,t)

given by (4.36). The flow (4.35) makes a double current sheet grow from the
origin with its ends at

4¢1/4 4itt/4

Z::t—gg/T, and Z:iW

Similarly, the flow vy = z;® would come in along the y-axis and go out along the
z-axis, but would also be inflowing along a direction :|:%7T and outflowing along
+ir.

3

Phil. Trans. R. Soc. Lond. A (1995)
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The time-dependent collapse of an X-type magnetic field 27

(9) Accelerated flows

In the process of setting up our basic solution (2.26), we have assumed that the
arbitrary function x(¢) in (2.18) is identically zero, and so the general solution to
(2.18), namely

0%z 0z
— =x(t)== 4.3

became
2z = 2o+ vot

and the flows were acceleration-free in the sense that 82z/9t* = 0. Let us therefore
briefly consider some of the consequences of having accelerated flows for which
8%z/0t? # 0.

First, suppose x(t) = Xo, a constant. Then the general solution to (4.37) having
z = 2o(f) and 0z/0t = vo(f) at t =0 is

dz ® ([ dky, yEp2kt+l dk+1 5 4kt 1p2k+2
2(f,t) = 20(F) +vo( At + dxoz7t + D ( yo g .
k=1

df dff 2k+1)!  dfett (2k+2)!
(4.38)
In particular, if we adopt our basic initial state
fo= %Zg
and initial flow
C2
Vo = —,
20

then for sufficiently small time ¢ or acceleration xq, (4.38) may be approximated
by

PRSP Ly Ly (4.39)

20 220
The solution for the complex potential is then f = %23 , where

220 = z + /(2* — 4¢Pt — 2x0t?),
and so the ends of the current sheet are now located at
z = £4/(4c’t + 2x0t)

in place of £2¢/t. If, therefore, the acceleration is positive (xo > 0), the ends of
the current sheet move outwards faster. If it is negative, they move more slowly
out to a distance /2¢?/v/(—xo0) at t = —c?/xo, and then they reverse direction
and move inwards; at ¢ = —2¢?/x, the sheet vanishes and thereafter it grows
along the y-axis.

The particular case when ¢ = 0, so vo(f) = 0, is of particular interest since it
implies that the plasma is initially at rest, a possibility which was not allowed in
our basic solutions. Then the ends of the sheet are located at 4+/(2x0)t and so
move with constant velocity. The resulting magnetic field and velocity are given
by

2 2\12
Boy +iBoy = - 2L — _ [z 4 V(z" = 2xot)] (4.40)
0z 4./(22 — 2x0t?)

Phil. Trans. R. Soc. Lond. A (1995)
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28 E. R. Priest and others

and

0z 2xot
. v, = — = , 4.41
U1z + 11y ot 2+ \/(Z2 IR 2X0t2) ( )
so that the field and flow components are self-similar with a similarity variable
z/t in place of z/4/t. The corresponding electric field is

_ _ _Xot 2
E()— RGVB— D) Re <1+ \/(22—2X0t2)> 5

which vanishes at t = 0, and the density is
Po Po

P 102/020 ~ 11— 2x0t?/[z + V(2° = 20?2

At the current sheet, By, = —%az as before. The current density is

. Xot® — x?

o/ (2x0t? - 2?)
which reverses direction at © = +4/xot; the total current in the sheet vanishes, as
expected from the current conservation. The paths of plasma elements are given,
by eliminating ¢ between the real and imaginary parts of (4.39), simply as the
straight lines

x
Zid oy
Lo Yo
Although moving in straight lines, the plasma elements are accelerating since
their speeds are increasing linearly with time, as can be seen by rewriting the

velocity components (4.41) as

xot

Ve +ivy =
20

When x(t) is a given function of ¢, one needs, in general, to resort to numerical
techniques to solve (4.37) with the appropriate initial conditions. However, at
small time, if x & xot", the corresponding form to (4.39) is

C2t Xotn+2
2R zZg+ — +
Tz (n+1)(n+2)z
and so, in the subsequent solutions with ¢*> = 0, one simply replaces %tQ by

£2/[(n + 1)(n + 2)].
Also, in general, if y can be expanded in powers of ¢ as

X(t) =D Xmt™, (4.42)
m=0
say, and we adopt the standard initial conditions, namely
0z
Z(Ov f) = zO(f)a E(Qf) Zvﬂ(f>, (4'43>

then the solution of (4.37) may be obtained as a power series in ¢:

z(t, f) = itkak(f).

Phil. Trans. R. Soc. Lond. A (1995)
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The time-dependent collapse of an X-type magnetic field 29

After substituting this expansion into equation (4.37), we obtain a recurrence
relation for the required coefficients as

() = 3 X2 (D)1= DR, k=2,3,..., (4.44)
where
alf) = 2(f) and ai(f) = vo(f). (4.45)

Relationships (4.44) and (4.45) therefore determine the general solution to the
initial-value problem.
We may apply these relationships for a particular example, namely the function

x(t) = xat, (4.46)
where x; = constant. In this case, (4.44) gives
Clz(f) = 07
and
x1ay,_3(f)
= — = 4 e e
ak(f) (k—].)k 7k 37 9

Applying (4.47) repeatedly, we then obtain all the required coefficients explicitly
as

a3m+2(f) =0,
(m)
N X7z (f)
asm(f) = 3mm!I™, (31 — 1)’
m, (m)
a3m+1(f) _ X1 Yo (f)

© 3T, (31 + 1)

where m = 1,2,.... In the same way, it is possible to find the general solution
for any polynomial function x(¢).

5. Solutions with unfrozen potential

(a) General method of solution

We have been able to derive a wide class of analytical solutions to the basic
equations (2.7)—(2.9), or equivalently (2.11)-(2.13), namely

jo = 0, (51(1)
9B, =V x (v; X By), (5.1b)
ot
dv
—dtl - By =0, (5.1¢c)
or

VA =0, (5.2a)

dA
= = .2b
= =0, (5.20)

Phil. Trans. R. Soc. Lond. A (1995)
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30 E. R. Priest and others
%’-;l X VA =0, (5.2¢)

by making the additional assumption that the magnetic potential (®) remains
frozen to the plasma. When this assumption is relaxed, it is much more difficult
to make analytical progress and, in general, a numerical technique is required.

In principle, one may consider any topologically accessible set of potential
solutions to (5.1a) or (5.2a) for the magnetic field and then the flow speed normal
to the magnetic field vy, is determined explicitly by (5.1b) or (5.2b). The difficult
step is finally to solve the nonlinear equation (5.1¢) or (5.2¢) for the flow speed
parallel to the magnetic field vy.

Now the plasma velocity (v;) may be written as

v = ULT'I:+’I)||§, (53)

where fi and § are unit vectors normal and parallel to the magnetic field, respec-
tively. In terms of the assumed known magnetic flux function A and potential ®,
these unit vectors may be written
VA Vo

n=—, §=—, 5.4

n Be 3 B (5.4)
where A(r,t) and ®(r,t) satisfy the Cauchy-Riemann equations

0A 09 0A oo

=—, —=—-— 5.
or 0Oy dy ox (5:5)
Equation (5.2b) may be written
0A 0A
"a—t+’v1 'VAEE'F’ULLBO:O,
and so the perpendicular velocity component is given simply by
—0A/ot
V1) = —TO‘— (56)
once A(r,t) and B(r,t) are imposed.
Next we may write vy in terms of an unknown function o as
o
’l)1|| = E, (57)
so that (5.3) becomes
0A/Ot ., o .
vy = — B n + Fos. (5.8)
Then, taking the scalar product with B and noting that B = BS§, we find
o= g .Bo, (59)

so that o represents the local cross helicity (whose global average is a rugged
invariant in MHD turbulence theory). Operating on this with d/d¢ and using

(5.1c), we obtain

do dBO

E = vy "a‘i-.—, (510)
Phil. Trans. R. Soc. Lond. A (1995)
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The time-dependent collapse of an X-type magnetic field 31

which determines o and, hence from (5.7), v;. Equation (5.10) is not as simple
as it first appears, since v, given by (5.8), involves ¢ and, in terms of Eulerian
coordinates, is a partial differential equation.

However, it may be solved by the method of characteristics (Titov 1995): in
terms of Lagrangian coordinates, o and the coordinates (z,y) of a plasma element
are given by three ordinary differential equations of the form

do x dy
HZ _g(xayytaa)a a{ "‘“vw(xayat, 0)7 a‘; _vy($7y7t’a)’ (511)
where, from (5.4), (5.5), (5.8)
OA/Ot o _04/ot
Vig = ——ng——BOy —B%‘B(m Viy = Bo ——5—Bo, + Bg BOya (5~12)

and (5.10) gives

' 0B, 0By, 0B, 0B 0B 0B
gzvlz( 02 | gy, 20 Fuy 60>+U1y< G20y 4 0, L2% 1y Oy),

ot o ot o Y by
(5.13)
where
0By, __0Bo, . 0By, _ 0B
or Oy’ oxr Oy’

so that, in cases where one of these partial derivatives is undefined in (5.13), it
may be replaced by another.

In terms of the complex magnetic field B(z,t) = By,+iBy, and velocity function
V(z,t) = v, + iv1,, equations (5.11) may be rewritten more compactly as

do 33 (93
dx
dy
1
n =ImV, (5.14c¢)
where
Y= ——-—8’4/8[; tio (5.15)

Thus, for any sequence By(z,y,t) or B(z,t) of accessible magnetic configura-
tions under the strong magnetic field approximation, the flow velocity compo-
nents are given by (5.6) and (5.7), with o determined by (5.11) or (5.14). For a
steady-state situation, 0B/t = 0 in (5.14a), and (5.15) becomes

—'EO + io
V= —p,
B
where the electric field Ey is a constant.

Once the velocity components have been found, the density is determined by

the continuity equation

op
ot
Phil. Trans. R. Soc. Lond. A (1995)
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32 E. R. Priest and others

Calculating the density in terms of the Jacobian of the mapping from initial
positions (7) to final positions (), as in equation (2.30), is not easily possible
since the mapping is determined numerically by (5.14). Furthermore, at first
sight, the method of characteristics seems to be not possible since V - v; on the
right-hand side of (5.16) involves knowing Vo. However, Vo is in turn given from
(5.10) by

6;U + (v; - V)Vo =Vg— (Vv;) - Vo. (5.16b)
Thus, p and Vo may be obtained from (5.16a) and (5.16b) by the method of
characteristics. In complex form, we obtain the following ordinary differential
equations:

b _ o Re [B <83+2v85 S)]

d ot V%
ds 9’8 10808\ 0B [1 (0B _ 0B
E—V(ataz*gagﬁ*l?ﬁlm[é(a”"a‘s)]
OB 2 (0B\] VOB o8 OB
2 — — am— — — tamm—
i [82 B(6z>]+836 TS Re [B(6t+2v6z S)]

where S is a complex variable whose real and imaginary parts are the y- and
z-components of Vo, respectively. These equations may be solved together with
(5.14) and their solutions define the positions of the moving particles at time
t and the corresponding values of o, p, and Vo for these particles. For flows in
stationary magnetic fields, the above equations are significantly simplified to

dp dB
i )]

ds ,[d°B dB VdB dB
<=V [@‘E(&‘)]”Bd—”f‘ (%S|

Thus, determining all the physical values in hypersonic MHD flows has been re-
duced to solving ordinary differential equations.

(b) Formation of a current sheet with Y-point ends

As an example, we now apply the above general method to the particular case
of a growing current sheet with Y-type null points at its ends. The assumed
complex magnetic field is

B(z,t) = (2* — L*)"/?, (5.17)

where L(t) is a growing function of ¢ and the current sheet extends between
x = —L and x = +L along the z-axis. Equations (5.14) then reduce to

do (zV — LL)V
a =™ {(—W} , (5.18)
dx B dy

where
Re(LLcosh™ z/L) +ioc + F

V= (22 — L2)1/2

Phil. Trans. R. Soc. Lond. A (1995)
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The time-dependent collapse of an X-type magnetic field 33

Here F(t) is an arbitrary function of time which arises from the integration of
—B with respect to z to give f(z,t) = A+ 1. Thus, from (5.17) we find

f(2) = —12(2* = L*)"* + L% cosh™'(2/L) + F(t) (5.19)

and so F(t) represents the value of the flux function A at the ends z = L of the
sheet. If F(t) = const., then there is no reconnection, whereas, if, for example,
F(t) = —Eyt with E, constant, there is a constant rate of reconnection as flux
passes through the current sheet at a constant rate.

For some practical purposes, the real form (5.11) of the equations is more
useful, even though (5.18) is more elegant. From (5.17) it can be shown that the
field components (Bo,, By,) are given by

By, =s, By, =r, (5.20)
where
28 = /(X*+Y?*) - X
2r' = /(X*+Y?)+ X (5.21)
X =2 —y? — L2
Y = 2zy.
The corresponding flux function is
A= %(—:L‘T +ys + L*log{[(z + )2 + (y + 8)*]"/2/L}) + F(t) (5.22)
and its time derivative is
O = Litog([(w + )7 + (y-+ )]/ L} + E. (5.23)

The remaining expressions that are required for solving (5.11) are

0By, [X(X2+Y?)"V2—1]LL 8By, _ [X(X2+Y?) 2 41]LL

ot 2s ot 2r
0By, 1 /2y —yX 0B, 1 /22X +yY
WZ‘%(‘—\W“@’)’ 79?=5'(—“—W”)
0By, 1 /x2X +yY 0By, 1 /2Y —yX
Ta?zié(m“””)’ dy :‘2‘8<¢X—2m‘y)'

We consider two particular cases where ¢ is initially assumed equal to zero.
In the first, the length of the current sheet is assumed to grow linearly in time
(L =t), while F(t) = 0 so that there is no reconnection. The resulting paths and
velocity components of plasma elements in the first quadrant are shown in figure
11, where the initial field lines are shown dashed. Elements which start above the
separatrix approach the z-axis and initially follow roughly straight-line paths, but
when they are close to the z-axis they curve rapidly as the flow speed vy along
the field lines becomes much greater than the speed v;;, normal to the field lines,
and the velocity becomes tangential to the z-axis. For the first few time elements,
the field line rotates slightly in an anticlockwise direction and a negative vy is
produced. Thereafter, as a substantial current sheet forms, the field line rotates
in a clockwise direction: this produces a coriolis force (—mw,; X v;) acting to the
left which makes the particle path bend to the left and which is balanced by a

Phil. Trans. R. Soc. Lond. A (1995)
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(@)

®)

velocity

time

Figure 11. (a) Paths of plasma elements when L =t and F(¢t) = 0. (b) Velocity components of
plasma elements initially at P (solid) and @ (dotted).

centrifugal force acting to the right. Elements which start ahead of the separatrix,
on the other hand, continue in paths which are only slightly curved. Eventually,
they reach the z-axis ahead of the current sheet and with a non-zero y-component
of velocity. At this point the analysis fails and one would expect a weak shock
wave to form.

For the second case, we have held the sheet length constant (L = 1) and set
F(t) = —t, so that we have steady reconnection. The paths of plasma elements
and their velocity components are shown in figure 12. The magnetic field lines are
shown dashed in figure 12a. Elements P and () are both on field lines which are
locally rotating in an anticlockwise direction and so the coriolis force acts to the

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 12. (a) Paths of plasma elements when L =1 and F(t) = —t. (b) Velocity components
of plasma elements initially at P (solid) and Q (dotted).

right as the plasma element moves and generates a negative vj. They eventually
reach the z-axis with a non-zero y-component of velocity and would be expected
to create a weak shock wave that is beyond the scope of the present analysis.

6. Conclusion

Until now, only two basic solutions for the formation of singularities in a mag-
netic field near an X-point have been put forward, namely the Green solution,

Boy +1Bo, = (2% + L*)'/2,

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY L\

PHILOSOPHICAL
TRANSACTIONS
OF

I \

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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and the Syrovatsky—Somov solution,
2,2 + a2
(22 + L2)1/2‘

In the present paper, we have discovered a large family of analytical solutions
which are, like the above solutions, potential outside the singularity, but which
are also self-consistent solutions of the MHD equations in the strong magnetic field
approximation of time-dependent slow flow in an ideal low-beta plasma.

Analytical progress is made by assuming that the magnetic potential is frozen
to the plasma and considering, in particular, acceleration-free flows from the
initial field (Bo,, Boy) = (—y, —). The resulting solution is expressed in compact

complex form as
(z + V(2" — )

4./(2? — t)

A current sheet stretches between —,/t and ++/t on the z-axis, and as it grows
it swallows half of the magnetic flux, while the remainder piles up ahead of the
sheet and creates regions of reversed current near the ends.

A current conservation theorem is proved, which states that the total current
in the sheet vanishes if the flux function and magnetic potential are conserved.
In addition, the basic solution is generalized in many ways to consider different
initial magnetic configurations, which have been proposed previously, and flows
which are accelerated. Also, a general numerical method for finding solutions
with unfrozen potential is developed and is applied to the Green solution with
Y-points at the ends of the current sheet.

The general topic of MHD behaviour near an X-point is enormous and has been
studied under a wide range of different assumptions. The present study of time-
dependent nonlinear ideal collapse aims to increase our understanding by com-
plementing the traditional theories of magnetic reconnection in a different region
of parameter space. In future, it would be invaluable to include pressure-gradient,
resistive and weak shock effects. However, the general methods developed here
would also be of use for non-X-point studies of the time-dependent evolution of
magnetic configurations.

Boy + 1By, =

Bo, +iBos = —
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